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Introduction

• Study the connection between certain Gaussian and empirical processes
and the Besov spaces B s

pq([0, 1]), s ∈ R

• Throughout this section, we let {ψlk} be an S-regular, S sufficiently large
wavelet basis of L2([0, 1]).

• periodised basis
• boundary-corrected basis

• For convention, the scaling functions φk equal the ‘first’ wavelets ψJ−1,k ,
whereJ = 0and J ∈ N large enough in the boundary-corrected case, and
we recall that there are 2l wavelets ψlk at level l ≥ 0
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Gaussian white noise and Brownian motion

• W: Gaussian white noise of isonormal Gaussian process on L2([0, 1])

W(g) ∼ N(0, ||g ||22), EW(g)W(g ′) =< g , g ′ >, g , g ′ ∈ L2([0, 1])

• Any ortho-normal basis of L2 {ψlk} generates an infinite sequence of
standard Gaussian r.v.s glk = W (ψk) ∼ N(0, 1)

• The process W can be viewed as a generalised function (or element of S∗)
simply by considering the action of the random wavelet series∑

l≥J−1

∑
k

gkψk

on test functions.

• This r.v.s is an element of some B s
pq?

Equal to check convergence of the Besov sequence norms of (glk).

• A similar question can be asked for the Brownian bridge process

G(g) ∼ N(0,

∥∥∥∥g − ∫ 1

0

g

∥∥∥∥2
2

), EG(g)G(g ′) =< g , g ′ > −
∫ 1

0

g

∫ 1

0

g ′
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Proposition 4.4.1

• The white noise process W and the Brownian bridge process G define tight
Gaussian Borel random variables in B−s

pp ([0, 1]) for any s > 1/2 and
1 ≤ p <∞.

• pf) For ep = E |g11|p, from Fubini’s theorem,

E ‖W‖p
B−s
pp

=
∑
l

2pl(−s+1/2−1/p)
∑
k

E |glk |p = ep
∑
l

2pl(1/2−s) <∞

so W ∈ B−s
pp almost surely, measurable for the cylindrical σ-algebra. Since

B−s
pp is separable and complete, mW is Borel measurable and the result

follows from the Oxtoby-Ulam theorem. The Brownian bridge case is the
same.
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Logarithmic Besov spaces

• Logarithmic Besov spaces

B s,δ
pp ≡

{
f : ‖f ‖p

B
s,δ
pp
≡
∑
l

2pl(s+1/2−1/p) max(l , 1)pδ
∑
k

|〈ψlk , f 〉|p <∞

}
, δ, s ∈ R

• Note that B s,0
pp = B s

pp, but otherwise we can decrease or increase the
regularity of the functional space on the logarithmic scale.

• Proposition 4.4.2 The white noise process W and the Brownian bridge
process G define tight Gaussian Borel r.v.s in B

−1/2,−δ
pp ([0, 1]) for any

1 ≤ p <∞, δ > 1/p.
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Proposition 4.4.3

• For any 1 ≤ p <∞, the random variables ‖W‖
B
−1/2
p∞ ([0,1])

and

‖G‖
B
−1/2
p∞ ([0,1])

are finite almost surely.

• pf) For every M large enough and ep = E |g11|p, from a union bound and
chebyshev’s inequality,

Pr
(
‖W‖

B
−1/2
p∞ >M

)
= Pr

(
sup
l

2−l
∑
k

|glk |p > Mp

)

≤
∑
l

Pr

(
2−l
∑
k

(|gkk |p − ep) > Mp − ep

)
≤ 1

(Mp − ep)2

∑
l

2−le2p

so for M large enough, we deduce

Pr
(
‖W‖

B
−1/2
p∞

<∞
)
> 0

(0-1 law for Gaussian measures) + (Besov norm, countable supremum of
finite-dimensional `p-norms, is measurable for the cylindrical σ-algebra C).
The Brownian bridge case is again the same.
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Other cases

• Borell-Sudakov-Tsirelson inequality implies the random variables

‖W‖
B
−1/2
p∞ ([0,1])

, ‖G‖
B
−1/2
p∞ ([0,1])

are actually sub-Gaussian.

• If max(p, q) <∞, W,G are not tight in B
−1/2
p∞ (nonseparable).
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p = q = ∞

• Theorem 4.4.4 (a) For ω = (ωl) = (
√
l), we have

Pr

(
‖W‖

B
−1/2,ω
∞∞ (0,1]

) <∞
)

= 1

(b) For any w s.t.
(
wl/
√
l
)
↑ ∞ as l →∞, the white noise process W

defines a tight Gaussian Borel r.v. in the closed subspace B
−1/2,w
∞∞∞,0 of

B
−1/2,w
∞∞ consisting of coefficient sequences satisfying

lim
l→∞

w−1
l max

k
|〈f , ψlk〉| = 0

(c) The preceding statements remain true if W is replaced by G.
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Donsker Properties of Balls in Besov Spaces

• P: prob. measure on A. B: subset of a Besov space B s
pq(A).

• Question: B is P-pre-Gaussian or even P-Donsker?
• A = [0, 1] case.

• Certain Besov balls will be shown to be P-pre-Gaussian but not P-Donsker.
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Besov Balls with s > 1/2

• Theorem 4.4.5 Let 1 ≤ p, q ≤ ∞, and assume that s > max(1/p, 1/2).
Then any bounded subset B of B s

pq([0, 1]) is a uniform Donsker class. In
particular, bounded subsets of Sobolev spaces Hs([0, 1]) and Holder spaces
C s([0, 1]) are P-Donsker for s > 1/2 and any P.

• To be precise, since we require s > 1/p, we can and do view as B as a
family of conti. functions in the preceding theorem. this result implies in
particular that B is P-pre-Gaussian for any P.
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Besov Balls with s > 1/2

• Proposition 4.4.6 If P has a bounded Lebesgue density on [0, 1], then any
bounded subset B of B s

pq([0, 1]) for 1 ≤ p, q ≤ ∞ and s > 1/2 is
P-pre-Gaussian.

• An interesting gap between Thm 4.4.5 and Prop. 4.4.6 arises when
1 ≤ p < 2 and P indeed has a bounded density.

• This gap provides examples for P-pre-Gaussian classes of functions that
are not P-Donsker.

• Proposition 4.4.7 Suppose that P has a bounded Lebesgue density on
[0, 1], and let 1/2 < s1. The unit ball B of Bs

1∞([0, 1]) is P-pre-Gaussian
but not P-Donsker.
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Besov Balls with s > 1/2

• Remark 4.4.8 Bs
1∞([0, 1]) consist of not necessarily conti. functions and

hence has to be viewed as a space Lebesgue-equivalence class of functions.
Empirical processes are not defined on equivalence classes of functions but
on functions.
The set of all a.e. modifications of a fixed function can easily be shown
not to be P-Donsker, so to avoid triviality, the preceding statement should
be understood as holding for B equal to any class of functions constructed
from selecting one element f from each equivalence class [f ] in the unit
ball of Bs

1∞([0, 1]).
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Donsker Properties for Critical Values of s

• Proposition 4.4.9 Bounded subsets of B
1/p
p1 (A), 1 ≤ p < 2, are uniform

Donsker classes for A any interval in (possibly equal to) R.
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Donsker Properties for Critical Values of s

• Theorem 4.4.10 For δ > 1/2, any bounded subset B of B
1/2,δ
22 ([0, 1])

consists of uniformly bounded continuous functions and is P-Donsker for
any P with bounded Lebesgue density on [0, 1].
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